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Planar cracks in the fuse model
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Abstract. We simulate the propagation of a planar crack in a quasi-two dimensional fuse model, confining
the crack between two horizontal plates. We investigate the effect on the roughness of microcrack nucleation
ahead of the main crack and study the structure of the damage zone. The two-dimensional geometry
introduces a characteristic length in the problem, limiting the crack roughness. The damage ahead of the
crack does not appear to change the scaling properties of the model, which are well described by gradient
percolation.

PACS. 62.20.Fe Deformation and plasticity (including yield, ductility, and superplasticity) –
62.20.Mk Fatigue, brittleness, fracture, and cracks – 64.60.Ak Renormalization-group, fractal,
and percolation studies of phase transitions

1 Introduction

Understanding the mechanisms of crack propagation is
an important issue in mechanics, with potential applica-
tion to geophysics and material science. Experiments have
shown that in several materials under different loading
conditions, the crack front tends to roughen and can of-
ten be described by self-affine scaling [1]. In particular, the
out of plane roughness exponent is found to display uni-
versal values for a wide variety of materials [2]. Interesting
experiments have been recently performed on PMMA and
the in plane roughness of a planar crack was observed to
scale with an exponent ζ = 0.63± 0.03 [3].

While the experimental characterization of crack
roughness is quite advanced and the numerical results very
accurate, theoretical understanding and numerical mod-
els are still unsatisfactory. The simplest theoretical ap-
proach to the problem identifies the crack front with a
deformable line pushed by the external stress through a
random toughness landscape. The deviations of the crack
front from a flat line are opposed by the elastic stress
field, through the stress intensity factor [4]. In certain
conditions, the problem can be directly related to mod-
els and theories of interface depinning in random me-
dia and the roughness exponent computed by numerical
simulations and renormalization group calculations [5,6].
Unfortunately, the agreement within this theoretical ap-
proach and experiments are quite poor. For the out of
plane roughness the theory predicts only a logarithmic
roughness in mode I [7], while the experimental results
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give ζ⊥ = 0.5 at small length scale and ζ⊥ = 0.8 at larger
length scales [2]. For planar cracks, simulations predict
ζ = 0.35 [8] and RG gives ζ = 1/3 [9], both quite far from
the experimental result. The inclusion of more details in
the model, such as elastodynamic effects, does not lead to
better results [9].

A different approach to crack propagation in disor-
dered media, considers the problem from the point of view
of lattice models [10]. The elastic medium is replaced by
a network of bonds obeying discretized equations until
the stress reached a failure threshold. The disorder in the
medium can be simulated by a distribution of thresholds
or by bond dilution. Models of this kind have been widely
used in the past to investigate several features of frac-
ture of disordered media, such as the failure stress [11–14],
fractal properties [10,16] and avalanches [15–19]. The out
of plane roughness exponent has been simulated in two
dimension, resulting in ζ⊥ ' 0.7 [20,21], and three di-
mensions where ζ⊥ ' 0.4–0.5 [22–24]. The last result is
in good agreement with experimental results, if we iden-
tify the small length scales with the quasistatic regime
used in simulations. The advantage of lattice models over
interface models is that the former allow for nucleation
of microcracks ahead of the main crack. While it is well
known experimentally that microcracks do nucleate, their
effect on the roughness exponent has never been studied.

In this paper we present numerical simulations of a pla-
nar crack using the random fuse model [11]. We employ
a quasi two-dimensional geometry, considering two hor-
izontal plates separated by a network of vertical bonds.
A similar setup was used in a spring model [25], but the
roughness was studied only in the high velocity regime
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Fig. 1. The geometry of the model. The horizontal bonds have
unitary conductivity while the vertical bond have conductiv-
ity σ. A planar crack is present at the center of the system and
a voltage drop is applied at the boundaries.

for crack motion. The experiments of reference [3] were
instead performed at low velocity so that a quasistatic
model seems more appropriate.

We find that the two-dimensional geometry introduces
a characteristic length limiting the crack roughness. In ad-
dition, crack nucleation does not appear to change in a
qualitative way the behavior of the system. For length
scales smaller than the characteristic length, the crack
is not self-affine, but possibly self-similar. We study the
damage zone close to the crack and find that several of its
features can be described by gradient percolation [26].

2 Model

In the random fuse model, each bond of the lattice repre-
sents a fuse, that will burn when its current overcome a
threshold [11–14]. The currents flowing in the lattice are
obtained solving the Kirchhoff equation with appropriate
boundary conditions [27]. In this paper, we consider two
horizontal tilted square lattices of resistors connected by
vertical fuses (see Fig. 1). The conductivity of the horizon-
tal resistors is chosen to be unity, while the vertical fuses
have conductivity σ. A voltage drop ∆V is imposed be-
tween the first horizontal rows of the plates. To simulate
the propagation of a planar crack, we allow for failures
of vertical bonds only and assign to each of them a ran-
dom threshold jc

i , uniformly distributed in the interval
[1 : 2]. When the current in a bond i overcomes the ran-
dom threshold, the bond is removed from the lattice and
the currents in the lattice are recomputed, until all the
currents are below the threshold. The voltage drop is thus
increased until the weakest bond reaches the threshold.

The quasistatic dynamics we are using should cor-
respond to the small constant displacement rate at the
boundary of the crack used in experiments [3]. In order to
avoid spurious boundary effect, we start with a preexist-
ing crack occupying the first half of the lattice (see Fig. 1)
and employ periodic boundary conditions in the direction
parallel to the crack surface. In addition, once an entire
row of fuses has failed, we shift the lattice backwards one
step in the direction perpendicular to the crack surface,
to keep the crack always in the middle of the lattice.

Before discussing the numerical results, we present
some analytical considerations which will guide the
simulations.

Fig. 2. The one-dimensional ladder model used to compute the
characteristic length. The vertical bonds have resistance r the
horizontal have unitary resistance. The end-to-end resistance
of the ladder is R.

3 Characteristic length

Here we investigate the model introduced in the preceding
section in some particular configuration. We first analyze
the case of a perfectly straight planar crack and study the
current decay in front of it. In this condition, the system
is symmetric in the direction parallel to the crack and we
can thus reduce it to one dimension.

We consider an infinite ladder composed of vertical
bonds of resistance r ≡ 1/σ connected by unitary hori-
zontal resistances (Fig. 2). Since the ladder is infinite, we
can add one additional step without changing the end-to-
end resistance R:

R = 2 + 1/(1/r+ 1/R) = 2 +
rR

r +R
· (1)

Solving equation (1) we obtain the total resistance

R =
√

1 + 2r + 1. (2)

The fraction of current j flowing through the first ladder
step is such that rj = R(1− j), which implies

j =
R

r + R
=

√
1 + 2r + 1

r + 1 +
√

1 + 2r
=
√

1 + 2r − 1
r

· (3)

The current flowing in the second ladder step is then
(1 − j)j and similarly in the nth step it is given by
jn = (1− j)n−1j, thus scaling as jn ∝ exp(−n/ξ) where

ξ ≡ −1
log(1− j) =

−1
log(1− σ(1−

√
1− 2/σ))

· (4)

Thus the current in front of the crack decays exponentially
with a characteristic length ξ ' 1/

√
2σ, for σ � 1. A sim-

ilar result could have been anticipated from the structure
of the Kirchhoff equations reading as∑

nn

(Vi+nn − Vi) + σ(V ′i − Vi) = 0 (5)

where the sum runs over the nearest neighbors of node
i and V ′i is the voltage of the corresponding node in the
opposite plate. Due to symmetry we can chose V ′i = −Vi
and solve the equations only for one of the plates. Equa-
tion (5) represents a discretization of a Laplace equation
with a “mass term”

∇2V − ξ−2V = 0, (6)

where ξ = 1/
√

2σ.
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The continuum limit can be used to understand how
current is transfered after a single failure. We define
G(x−x′) as the difference in the currents in x before and
after a bond in x′ has failed. The function G is analogous
of the “stress Green function” used in interface models for
cracks propagation [7–9]. In fact, the equation of motion
in these models is written as

∂h(x, t)
∂t

= F +
∫

dy G(x− y)(h(y, t)− h(x, t)) + η(x, h),

(7)

where h indicate the position of the crack, F is propor-
tional to the external stress, η to the random toughness
of the material and for a planar crack in three dimensions
G(x) ∼ 1/|x|2. A renormalization group analysis shows
that the roughness of the interface crucially depends on
the decay of G [5,6]. If G decays slower than |x|−1, for
x→∞ the interface is not rough on large length scales.

In order to compute the function G, we solve equa-
tion (6) with the appropriate boundary conditions. Note
that by definition G(x) is proportional to the differences in
the voltages in x before and after removing a fuse. Since
equation (6) is linear, the difference of the voltages still
satisfies the equation in all points except x = 0. This
condition can also be expressed in terms of the current
J ≡ ∂V/∂y [28], which should be continuous everywhere
apart from x = 0.

Let’s consider a planar crack along the x direction and
identify two domains:
1) the domain where fuses are present (y > 0) labeled A
2) the domain where all fuses are burnt out (y < 0) labeled
B. Thus the equation to solve in domain A is

∇2V = ξ−2V (8)

and in B ∇2V = 0.
Taking the Fourier transform along x, and calling k

the conjugate variable to x, we can write in domain A

∂2
y Ṽ = (k2 + ξ−2)Ṽ . (9)

Integrating the equation, setting V → 0 at infinity, we
obtain

Ṽ (k, y) = Ṽ (k, 0) exp(−y/`) (10)

where 1/` =
√
k2 + ξ−2. A similar calculation allows to

obtain Ṽ (k, y) in domain B.
The currents normal to the crack in the two domains

are given by

J̃A(k) = −
√
k2 + ξ−2Ṽ (k, 0) (11)

and

J̃B(k) = −|k|Ṽ (k, 0), (12)

where Ṽ is the same for the two domains. If one bond is
removed at x = 0 along the interface, the continuity of
the current implies JA + JB ∼ δ(x) and in Fourier space

J̃A(k) + J̃B(k) ∼ 1 (13)
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Fig. 3. The current transfer function in log-log plot (top), to
show the logarithmic behavior at short length scales. In the
linear-log plot (bottom) the function G has been rescaled with
ξ and the collapse is in agreement with the analytical solution.
The deviation from a pure exponential exp(−x/ξ), plotted as
a dashed line, is due to the periodic boundary conditions em-
ployed in the simulation.

and hence

Ṽ ∼ −1

|k|+
√
k2 + ξ−2

· (14)

The Fourier transform of the function G is simply pro-
portional to Ṽ and therefore at short distances kξ � 1,
Ṽ ∝ 1/|k|, or G ∝ log(x), while at long distances kξ � 1,
G ∝ exp(−x/ξ).

We test the asymptotic behavior predicted above by
estimating G from numerical simulations. The results for
a lattice of size L = 128 are in good agreement with the
analytical predictions as shown in Figure 3. It is interest-
ing to remark that the roughness of the crack is limited
by ξ, but even in the limit ξ →∞ we do not expect a self-
affine crack, since G decays slower than 1/|x|. In the next
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section, we will show numerically that damage nucleation
does not alter this conclusion.

4 Crack roughness: simulations

In order to analyze the effect of crack nucleation ahead
of the main crack, we first simulate the model confining
the ruptures to the crack surface. In this way, our model
reduces to a connected interface moving in a random
medium with an effective stiffness given by the solution
of the Kirchhoff equations. The results are then compared
with simulations of the unrestricted model, where ruptures
can occur everywhere in the lattice. In both cases the crack
width increases with time up to a crossover time at which
it saturates. In Figure 4 we compare the damage struc-
ture in the saturated regime for the two growth rules. The
height-height correlation function C(x) ≡ 〈(h(x)−h(0))2〉,
where the average over different realizations of the disor-
der, is shown in Figure 5. From these figures it is ap-
parent that the structure of the crack is similar in the
two cases. The only difference lies in the higher saturation
width that is observed when microcracks are allowed to
nucleate ahead of the main crack.

Next, we analyze the behavior of the crack as a func-
tion of σ which should set the value of the characteristic
length to ξ ' 1/

√
2σ. In this study we restrict our at-

tention to the general model with crack nucleation. We
compute the global width W ≡ (〈h2〉 − 〈h〉2)1/2, averag-
ing over several realizations of the disorder (typically 10),
as a function of time for different values of ξ. Figure 6
shows that W increases linearly in time until saturation.
The global width in the saturated regime increases roughly
as ξα (see inset) but, due to the limited scaling range [29],
we could not obtain a reliable estimate of the exponent
value.

5 Mean-field approach

The long-range nature of the Green function suggests that
a mean-field approach could be suitable. We outline here
the spirit of such an approach, through the determination
of the density of burnt fuses ahead of the crack front. First,
we note that the mean profile is expected to be transla-
tional invariant along the x axis and thus the problem
reduces to a one-dimensional geometry. As argued ear-
lier, the tension V (y) should obey the following differential
equation, in the continuum limit:

∂2V

∂y2
= 2σ(y)V (y) (15)

where σ(y) is the (x-averaged) conductivity at position y.
The latter can be written as (1 −D(y))σ0 where D(y) is
the “damage”, i.e. fraction of burnt fuses. This fraction
is a known function of the current density in the mean-
field approach. Namely, the vertical current going through
intact fuses is j(y) = 2σ0V (y) = V (y)/ξ2. It is remarkable
that D(y) drops out of this equation: the damage reduces
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Fig. 4. The crack profiles in the steady state, when only a
connected crack is allowed to grow (a) and when damage is
not restricted to occur only close to the crack (b). The crack
interface is shown in dark.

the current density flowing at a given position by a factor
(1−D(y)) as compared to the intact state, but the same
current density flows through a reduced number of intact
fuses, and is thus multiplied by 1/(1−D(y)). In conclusion
the two factors cancel out.

The proportion of fuses which may support the current
without burning is given by the cumulative distribution
of threshold currents: P (j) =

∫∞
j p(j′)dj′, which implies

D(y) = 1 − P (j(y)). The voltage profile along the y axis
is thus given by

ξ2 ∂
2V

∂y2
= P (V (y)/ξ2)V (y). (16)

This equation can be rewritten in terms of the rescaled
coordinate s = y/ξ and current j = V/ξ2 and in our case,
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Fig. 5. Comparison between the height correlation function of
a connected crack (bottom curve) and that of a unrestricted
crack (upper curve).
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2σ. In the inset we show the value of

the saturated width as a function of ξ, the fit on four points
gives α ' 0.75

since P (j) = 2− j for 1 < j < 2, we obtain

j′′(s) = j(s)(2− j(s)). (17)

Notice that equation (17) is valid only for 1 < j < 2, while
for j < 1 the equation becomes j′′ = j and for j > 2 we
have j′′ = 0. At infinity, j < 1 thus the current is given
by j = e−(s−s0), for s > s0, so that the boundary condi-
tion for equation (17) at s = s0 is j(s0) = −j′(s0) = 1.
With these boundary conditions, equation (17) can not
be solved explicitly so we resort to numerical integration.
From the solution of equation (17) we obtain the dam-
age profile and compare it to numerical simulations (see
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Fig. 7. The average concentration D(y) of burnt fuses as a
function of the reduced distance y/ξ from the crack for different
values of σ. The numerical results are in excellent agreement
with the mean-field solution.

Fig. 7) The remarkable agreement between the mean-field
solution and simulations, with a damage profile which is
a single function of y/ξ, implies that the fracture front
should be given by gradient percolation (in fact the gra-
dient is non-linear) [26]. From this observation we can ex-
tract the scaling of the front with the gradient g (here
g ∝ 1/ξ) as W ∝ g−ν/(1+ν) ∝ ξν/(1+ν) where ν is the
percolation correlation length critical exponent ν = 4/3,
or α = 0.57. Due to the limited scaling range obtained in
simulations, we could not confirm this result.

6 Conclusions

In this paper, we have studied the propagation of planar
cracks in the random fuse model. This model allows to
investigate the effect on the crack front roughness of the
microcracks nucleating ahead of the main crack. The study
was restricted to a quasi two-dimensional geometry and
could apply to cases in which the material is very thin in
the direction perpendicular to the crack plane [30].

In two dimensions, the geometry of the lattice induces
a characteristic length ξ limiting the roughness and mi-
crocrack nucleation does not appear to be relevant. In ad-
dition, for length scales smaller than ξ the Green function
decays very slowly, suggesting the validity of a mean-field
approach. We study the problem numerically, computing
the scaling of the crack width with time and ξ, and ana-
lyze the damage ahead of the crack. The results suggest
an interpretation in terms of gradient percolation [26], as
it is also indicated by mean-field theory. The limited range
of system sizes accessible to simulations does not allow for
a definite confirmation of these results.

The present analysis does not resolve the issue of
the origin of the value of the roughness exponent for
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planar cracks in heterogeneous media. While microc-
rack nucleation is irrelevant in the present context,
three-dimensional simulations are needed to understand
whether this is true in general. In principle, one could
still expect that microcrack nucleation in three dimen-
sions would change the exponent of the interface model
(ζ = 1/3), but the present results do not lead to such a
conclusion.
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